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Abstract: Thermal resource management (TRM) of onboard hypersonic vehicles is an important field of research and
development, and considerable attention has been received from the scientific community in the past few decades. A
scramjet engine at hypersonic speed warrants stringent cooling requirements to manage its thermal load. Therefore,
managing thermal loads in an advanced engine to power future aircraft is challenging. The US Air Force Research
Laboratory (AFRL) is investigating ways in which heat can be dissipated to cool hypersonic vehicles. The uncertainty
quantification in a transient heat rejection system is analyzed. The stochastic nature of the initial condition and heat
rejection boundary condition is introduced to define the temperature distribution in the system. Results are presented for
the temperature variation as a result of uncertainties in the initial condition and Biot number at the boundary where heat
is rejected. The terms that impact the overall uncertainty in the transient regions are discussed.
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1. INTRODUCTION

THERE are often situations in which temperature
regulation is critical to the survival of aerospace
systems. In recent years, hypersonic vehicles have
been a focal point in research and development around
the world. One of the greatest challenges faced is the
exchange of heat on a hypersonic body, especially with
the extreme temperatures that are often associated
with aerodynamic heating experienced in hypersonic
flight [1].

In hypersonic flight, material properties of the
vehicles can have significant implications on a system’s
survivability and may impact mission success if
extreme temperatures cause degradation to the
integrity of the system. Furthermore, material
properties may have a degree of uncertainty in their
characteristics due to manufacturing processes,
imperfections in manufacturing, or imprecision of
measurements for component fabrication. Uncertainty
in an initial condition of a material and its thermal
management characteristics can propagate through
time, making it difficult to predict the transient
characteristics of the system.

Due to the extreme temperatures experienced in
hypersonic flight, increasingly complex thermal
management systems are being developed. These
systems often require the movement of fuel for cooling
and the implementation of heat exchangers to maintain
vehicle viability [2]. If there is uncertainty in the heat
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exchange at a top level, the overall system may need
to be modified to ensure that no component limitation is
exceeded.

Uncertainty analysis has become a more recent
field of study that has been applied to many different
scientific fields. Several numerical methods have been
developed and applied in simple problems. Some of
these methods have matured to the point where
numerical integration and numerical simulations may
be implemented with more complex, multi-variable
problems [3]. Other techniques have also been
developed and utilized to optimize trajectories for the
uncertainty of flight conditions when vehicles use PID
controllers [4].

Previous uncertainty research has been conducted
on one-dimensional heat transfer with a constant heat
flux boundary condition and was compared to a high-
fidelity experimental model. This shows that there is
value in this method of uncertainty modeling and offers
opportunity to further quantify this setup in simulation.
This specific set of research explored the implications
of thermal management for components including
electronics, but it could also be applied to other
scenarios as well due to the non-dimensional
methodology [5]. Another paper explored a
mathematical model with a very similar simulation
setup and commented specifically on the time evolution
of the stochastic characteristics [6].

A stochastic or random process in probability is the
counterpart to a deterministic process. Instead of
dealing with only one possible outcome of the temporal
evolution of the process, in a stochastic or random
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process, there is some indeterminacy in temporal
evolution described by probability distributions. This
means that there are many possibilities the process
might reach, but some paths may be more probable
and others less so.

This paper explores a one-dimensional plate with a
constant temperature boundary condition on one
surface and a convective boundary condition on the
other. This is representative of a simplified plate that
may be present on a hypersonic vehicle. Material
properties of this simulation are represented in the
value known as the Biot number, which is the ratio of
internal conduction resistance to the external
convective resistance of the body. With uncertainty in
the material properties, the convective heat transfer
coefficient, h, or any of the initial temperature
conditions of the system, errors are expected to
propagate through the model during unsteady, transient
simulations. The goal of this paper is to characterize
non-dimensional temperature and non-dimensional
heat flux behavior to determine the factors that have
the greatest risk of exceeding known thermal
management limitations.

2. MODEL DESCRIPTION AND DEVELOPMENT

The problem assessed in this paper is a one-
dimensional heat transfer scenario with a constant
temperature boundary condition on the top surface and
a convective heat transfer boundary condition along the
bottom surface. This is shown in Figure 1. Once this
model was established, the following heat balance
equation was analyzed to describe the behavior of the
heat transfer scenario across the plate.

(T T W
oxz PPt

Where k is the thermal conductivity of the material
(W/m-K), p is the density of the material (kg/ma), and ¢,
is the specific heat of the material (J/(kg-K)). This
equation is then subject to the following boundary and
initial conditions:
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The equations above are non-homogeneous.
Therefore, a solution is assumed to have the following
form with both a steady and unsteady component:

T(x,t) =S() +Ux, ) (5)
Using the separation of variables method, the

steady state solution is determined as:

S(x) =T; (T — T)x (6)
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And the unsteady solution is:
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With the eigenvalues, A, defined by the following
eigenfunction:

AnLcos(A,L) + Bisin(A,L) =0

Where the Biot number, Bi = ':C—L

The solution for T(x,t) can then be written by
combining Eq. (6) and Eq. (7) into Eq. (5) and
simplifying.
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Figure 1: Description of heat transfer model: a) dimensional layout, initial conditions, and boundary conditions, b) non-

dimensional layout, initial conditions, and boundary conditions.
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To apply this simulation model to a variety of
different materials and plate dimensions, the
parameters must be non-dimensionalized. This
requires the following definitions to be incorporated into
the solution found in Eq. (9).

T—-T,
6 =

at
2

Bn = AL

Equation (9) can then be written as follows to
represent the non-dimensional temperature for a given
non-dimensional coordinate and non-dimensional time.
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Where eigenvalues, B, are calculated from the
following eigenfunction:

B, cot(B,) + Bi = 0 (13)

Finally, the following equation is developed to
represent the non-dimensional temperature difference
across the one-dimensional plate. This is one of the
two metrics that will be discussed in the results.

460 = 6(0,7) — 0(1,7) (14)

_ Bi
T Bi+1

A0 —ZAn sin(B,) e~F’T (15)

After development of the expression of the non-
dimensional temperature difference across the plate,
the non-dimensional heat flux at the top surface of the
plate (¢ = 0) is calculated and plotted for observations.
This term is important as it is the point on the plate that
experiences the most extreme heat flux during any
given heat exchange scenario. Non-dimensional heat
flux can be represented by 6'(0,7). Equation (16)
represents the non-dimensional heat flux. This is the
second metric that will be discussed in the results
section of this paper.

Bi
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+ Z A, B,ePn’T (16)
3. STOCHASTIC SIMULATION METHODOLOGY

After the development of the expression of the non-
dimensional temperature difference across the plate,
A6, and the non-dimensional heat flux at the upper
surface of the plate, 6'(0,7), Monte-Carlo Simulations
were conducted to observe the behavior of the sample
when uncertainty was introduced to various
parameters.

The three variables that had uncertainty introduced
to them are the Biot number, Bi, the dimensionless
constant describing initial temperature at the top of the
plate, F,, and the dimensionless constant
parameterizing initial temperature variation across the
plate, F,. For each term, a normal distribution was
randomly generated with a standard deviation scaled
appropriately to have 3 standard deviations represent
+/- 10% variation in the term. In the Monte-Carlo
Simulation, 100 random values were sampled for Bi,
Fy, and F;. These conditions were implemented into
Equations (12), (13), (15), and (16) to generate the
results, which were then plotted against non-
dimensional time from 0 to 1000. A computer was used
to iterate calculations to find eigenvalues for each
randomly selected Biot number. The initial guesses for
this iterative method came from a known table of
solutions to Eq. (12) [7].

A brief sample size study was conducted to verify
the accuracy of the choice of 100 samples. This study
was conducted specifically for the case where
Bi, = 0.1, Fy, =1, and F;, = 0.5. At this condition, 10,
20, and 100 samples were gathered and processed
through the time dependent simulation. Afterwards, the
results were averaged and compared to the no-
uncertainty case. This was accomplished 50 times for
each sample size test group and is shown in Figure 2.

100 samples was determined to be a sufficiently
large sample size for the simulations conducted on A6.
The greatest spread occurred at the initial time step,
and the randomly sampled averages converged to a
variation of about 0.01 from the no-uncertainty case.
However, when conducting the 6(0) simulations, the
spread from the no-uncertainty case was nearly 0.05.
This would likely need further refinement in future
studies, however it was not accomplished due to
computational limitations.
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Figure 2: Sample study for case with Bi, = 0.1, F, = 1, and F,, = 0.5 where a) shows Af(t) and b) shows 8'(0, 7).

4. RESULTS

After several simulations, data is collected and
plotted against non-dimensional time. The key
parameters that are varied are the Biot number, Bi,,
and the constants F,,, and F,,. This provides a broad
scope of material and temperature conditions that may
be expected in both subsonic and hypersonic heat
exchange scenarios. The results section is broken into
two pieces for comparison of the temperature change
across the plate as well as the heat flux at the top
surface of the plate. A normal distribution was used for

Bi with o = O'I:i“ ensuring a + 10% 3-sigma variation.

4.1. Non-Dimensional Difference

Across the Plate

Temperature

Figures 3 through 7 specifically display the non-
dimensional temperature changes across the plate as
non-dimensional time progresses. As Biot number
increases, the general behavior of the non-dimensional
temperature differences follows a similar trend.
However, the primary characteristics to note are that
the steady state values increase as Biot number
increases. This is a similar trend found in another
research, and is explained by the following:

Bi
A (T = = 17
(t=) =175 (7
The steady-state A6 value at 7=1000 s

determined by the value of Bi,.

The transient portion of this simulation for all cases
lasts until a non-dimensional time of ¢ = 1. Beyond that
point, there is a distribution of outputs, but it is much
less than the uncertainty observed earlier in each

simulation. Additionally, the distribution in the later
portion of the simulation is approximately uniform.

As focus shifts to other aspects of the simulation, it
is interesting to compare simulations as F,, and F;,
change individually. Across the 45 total simulations
accomplished for A6, as F,, changes, the stochastic
spread changes very little. This is observed by
comparing the groupings of data in each individual
subplot. Instead, the different F,, terms have a greater
impact on the initial values of A9, therefore affecting the
transient path of the simulation. On the other hand, as
Fy, increases, the amount of uncertainty in the
transient results also increases. This is most obvious
when Biot numbers are small, such as Bi=0.01
depicted in Figure 3. In this case, the variation in A8
increased from a range of about 0.1 for F, = 0.5 to a
range of about 0.45 when F,, = 2. This becomes less
apparent as Biot number increases and the magnitude
of the Biot number itself drives the non-dimensional
temperature change across the plate.

4.2. Non-Dimensional Heat Flux at Upper Surface of
the Plate

The non-dimensional heat flux provides a different
perspective on the one-dimensional problem than what
is presented when only looking at the non-dimensional
temperature difference. The parameters used for the
non-dimensional heat flux are the same as those used
in the non-dimensional temperature differences across
the plate. Figures 8 through 12 are laid out and
organized in the same manner as seen above.

As discussed with the data found for A6, the Biot
number primarily has an effect on the final value of
0'(0), which can be represented as shown in Eq. 18:
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Figure 3: A6 with Bi,, = 0.01 and a) Fy, = 0.5 b) Fg, =1 ¢) Fo, = 2.

1
05
]
a. A9r)
-05
-1

1072 10° 102
Non-Dimensional Time (r)

¢ AT
05

b. Aé(7)
05

Non-Dimensional Time (r)

10° 107
Non-Dimensional Time (7)

Figure 4: A6 with Bi,, = 0.1 and a) F, = 0.5 b) Fy, = 1) Fy, = 2.
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Figure 5: A9 with Bi,, = 1 and a) Fy, = 0.5 b) Fy, = 1¢) Fg, = 2.
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Figure 6: A6 with Bi,, = 10 and a) Fo, = 0.5 b) Fy, =1 ¢) Fg, = 2.
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Figure 7: A6 with Bi,, = 100 and a) Fy, = 0.5 b) Fo, = 1 ¢) Fg, = 2.
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Figure 8: 6'(0,7) with Bi, = 0.01 and a) Fy, = 0.5 b) Fy, = 1 ¢) Fy, = 2.
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Figure 9: 6'(0,7) with Bi,, = 0.1 and a) Fo, = 0.5 b) Fo, = 1) Fo, = 2.

b.é(0) 0

-35

102 10° 10 10
Norn-Dimensional Time (7)

10"
Non-Dimensional Time (7)

10?

Figure 10: 6'(0,7) with Bi, = 1 and a) Fy, = 0.5 b) Fo, = 1 ¢) Fy, = 2.
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Figure 11: 6'(0, t) with Bi, = 10 and a) Fy, = 0.5 b) Fy, = 1 ¢) Fg, = 2.
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Figure 12: 6'(0, 7) with Bi,, = 100 and a) Fy, = 0.5 b) Fy, = 1 ¢) Fg, = 2.
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However, in these simulations, the total uncertainty
remains relatively consistent as Biot number changes.
The value of F;, has little effect on the overall
uncertainty of the transient response, but impacts the
initial condition and path of the transients instead. At
steady state, the initial conditions (FO, F1) decay and
the solution is governed purely by the balance between
internal conduction and external convection, which is
captured by the Biot number.

When observing the effect of F, on 6'(0), there is a
much more noticeable change. With values of F,, =
0.5, the uncertainty in 6'(0) is relatively low, and the
general trend is an exponential decay with all negative
values. With a value of F,, = 2, the uncertainty in 6'(0)
is also relatively low with an exponentially decaying
trend. However in this case, all values for 6'(0) are
positive. This suggests that the F;, term drives the
direction of heat flux in these types of simulations.

For the third case, when F;, = 1, the simulations
provide much more variation in the outputs. In fact, the
uncertainty in the initial state of 8'(0) is so great that
the direction of heat flux may have different directions
with all other conditions held the same. This quickly

dampens out, and the final value reaches a constant
when non-dimensional time 7 = 1. This uncertainty in
the direction of heat flux may have further implications
when applied to a real-life system. We note that
Fo, =1 implies that the initial temperature at the top
surface is equal to the ambient temperature, making
the heat flux at the boundary inherently ambiguous and
highly sensitive to other stochastic inputs.

5. CONCLUSION

After several Monte-Carlo simulations for the one-
dimensional plate setup, the behavior of the transient
thermal management properties were documented and
displayed. Uncertainty in the Biot number and the initial
conditions of each simulation had an effect on the
overall behavior of the interaction, but every simulation
followed an exponentially decaying trend that ultimately
reached a steady state value that had a small uniform

distribution.  Throughout each simulation, the
uncertainty  continuously  decreased as time
progressed.

The simulations that show the greatest variability in
the A6 are those with the highest values of Fp,,
especially when the values of Biot numbers are low.
The simulations that show the greatest variability in
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6'(0) are those where the value F;, =1. In most
instances, the uncertainty in the Biot number and the
initial conditions cause outputs that can be both
positive and negative, leading to an unknown for the
direction of heat flux in the system. This is one of the
driving factors that may impact the designs of
hypersonic vehicles and their associated cooling
systems.

This research expands upon what has been
explored in several other papers for uncertainty
propagation in one dimensional heat transfer scenarios
with different boundary conditions. Future research can
go in several different directions. First, one-dimensional
problems can continue to be explored with more
boundary condition configurations, or with uncertainty
in more variables in the problem. The boundary
conditions more representative of aerodynamic heating
can be considered. Next, two-dimensional heat transfer
cases may be explored for more practical application to
real life heat exchangers. Should others decide to
quantify uncertainty propagation in two-dimensional
problems, it may be necessary to look for ways to
estimate the eigenvalues of the problem in the
numerical method to increase computational efficiency
by using sparse grid techniques. This would enable
more complicated problems to be assessed and would
also allow for a greater number of trials to be used in
each simulation for greater accuracy.

NOMENCLATURE
A = constant
An = coefficients in non-dimensional time-

dependent series

B = constant

Bi = Biotnumber, Lh/k

¢, = specificheat, J/ (kg - K)

Fo = dimensionless constant parameterizing initial
temperature

Fo, = mean values for stochastic quantities Fo, and

Fiu F4

F; = dimensionless constant parameterizing initial
temperature distribution across plate

h = convective heat transfer coefficient, W / (m2 :

K)

k = thermal conductivity, W/ (m - K)

L = thickness of plate, m

S = steady solution to problem

T = temperature, K

T = initial temperature on the top surface of the
plate

T° = temperature of ambient medium surrounding
plate, K

t = time, s

U = unsteady solution to problem

X = dimensional coordinate, m

a = thermal diffusivity, m? /s

B, = non-dimensional eigenvalue

A6 = dimensionless temperature difference
between the top and bottom surfaces of the
plate

C] = dimensionless temperature

6, = initial dimensionless temperature

A, = dimensional eigenvalues

é = dimensionless coordinate, z /L

p = material density, kg/m3

T = dimensionless time, af / L*
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